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An algorithm for solving diffusion equations is described which has an arbitrary order of  approximation in 

space variables, i.e., its accuracy is the higher, the smoother the solution in space variables. This provides 

an advantage over difference methods, which have a f i xed  order oi' approximation in space variables 

irrespective of  the solution smoothness. In practice, this allows one (with smooth initial data)  to carry out 

calculations on coarse space grids by an explicit scheme with applicable time steps. The method is competitive 

with difference methods in speed and the amount  of  information stored. 

Introduction. Because of the problem of simulation of underground burial of liquid waste materials, interest 

has been recently rekindled in the development of algorithms for numerical calculation of diffusion equations. In 

practice, liquid waste materials are pumped into deep collector beds through several holes. If there is no ground- 

water motion, the impurity propagation is described by a diffusion equation. The initial impurity distribution after 

cessation of pumping is described by a function with large gradients over the space coordinates. This function may 

be thought of as smooth. Therefore, for discretization of a diffusion equation over space coordinates it is worthwhile 

to apply methods without saturation [1 ]. With respect to time, diffision is a very slow process, which is 

approximated by an explicit first-order scheme with an accuracy sufficient for practice. Moreover, the explicit 
scheme admits a simple realization on an electronic computer with several processors operating in parallel. 

The classical technique for solving the diffusion equations is the difference method. Discretization by this 

method leads to a finite-dimensional problem with a "thinned" matrix. This allows one to organize efficient 
computations by an explicit scheme. Methods without saturation lead to a finite-dimensional problem with a 

completely filled matrix. However, in the case considered these matrices have a special structure [2 ], which makes 

it possible to organize computations economically and create a procedure that is competitive with difference methods 

in speed and memory needed, but exceeding them in accuracy (for smooth initial %ta). 

I. Statement of the Problem and Discretization. We consider problem in a singly bound region B E R 2 with 
a sufficiently smooth boundary OB: 

Ou (z, t) = DAu (z, t) z E B" (1) 
Ot ' ' 

u loB = 0 ; (2) 

ult=o = Uo (z). (3) 

Here, D is the coefficient of diffusion and A is the Laplace operator. As an example, we consider the Dirichlet problem 

with zero boundary conditions (2). We shall see in what follows how the other boundary conditions can be considered. 
The function uo(z) is considered rather smooth. 

Let z = ~,(~), I~1 _< 1 be the conformal mapping of a single circle onto region B; then in the ~ plane we 

formally obtain the same relations (1)-(3), but with u(z, t), uO(Z) replaced by u(z(~), t), uo(z(~)) and D by 
DIT,'(~)l -2. Boundary condition (2) is now given at the boundary of the single circle, i.e., at r-- 1. 
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T h e  discre t iza t ion  of the initial  bounda ry -va lue  prob lem (1) - (3)  over  space  var iab les  is r educed  to 

discretization of the Laplace operator  in a circle with the Dirichlet boundary-va lue  condition. We will per form this 

discretization following the procedure described in [2 ]. Then ,  we obtain a discrete Laplacian in the form of an  

h-matr ix:  

2 tt 
H = -~  ~ ,  ' A k | h k ,  (4) 

k=0 

w h e r e  N - 2n + 1 is the number  of grid nodes over the circles Rv, v .= 1 . . . . .  m; the sign | means  the Kronecker  

product of matrices Ak of size m x m and  matrices hk of size N x N; the prime at the summat ion  sign means  that  

the term at k = 0 is taken with the coefficient 1/2. Here  m is the number  of the nodes of the grid on the radius of 

a single circle. The  form of matrices hk is described in [2 ]. To construct matrices Ak, k = 0 . . . . .  n, it is necessary  

to perform discretization of the k- th  Bessel equation on the grid Rv ,  v = 1, 2 . . . . .  m .  

As nodes of the grid on the radius we select Rv = 0.5(1 + rv) and r v = cos ((21, - l ) : t / 2 / m ) ,  v = I ,  2 . . . . .  

m. We obtain matr ix  Ao by discretizing the zero Bessel equation following a procedure descr ibed in [3 ]. More 

precisely, using the BESSEL program published in [3 ], we calculate a matr ix  of size m x m and  then calculate the 

reciprocal of that  matrix.  Thus,  we obtain matrix Ao. Then ,  we select matrices Ak ffi A o + Si ,  k = 1, 2 . . . . .  n, as 

matrices A/c, where  S k are  diagonal matrices with numbers  ( k / R v )  2, v = 1, 2 . . . . .  m on the diagonal.  

Thus  the discretization of the operator  - A  constructed in a single circle satisfies the Dirichlet homogeneous  

b o u n d a r y - v a l u e  condi t ion .  To  cons ide r  a n o t h e r  b o u n d a r y - v a l u e  condi t ion ,  it is n e c e s s a r y  to cons t ruc t  a 

corresponding discretization of the Bessel equations. 

We note that  to save h-matr ix  H (4), it is necessary to save two files of A o numbers  of size m x m and 
/~-2, v =  1, 2 . . . . .  m. 

2. An Algorithm for  Rapid Multiplication of h-Matr ix  by  a Vector. For effective realization of the explicit 

difference scheme with respect to t ime of problem (1)-(3) ,  we need a fast  algori thm for mult iplying h -mat r ix  H by 

a vector. On the basis of theorem [2 ], matr ix  H is represented in the form 

H = 

h 11 h 12 ... h TM 

h 21 h 22 ... h 2m 

where matrices h TM, v, /z  = 1, 2 . . . . .  m of size N x N are symmetr ic  circulants, i.e., matr ices the first  line of which 

has the form a o a l . . . a n a n a n - l . . . a l ,  and the remaining lines are obta ined by permutat ion f rom the first cyclic one. 

For matrices h TM, v, /z  = 1, 2 . . . . .  m we have the following representat ion 

2 & v# 
= Z "~' ( i ~ ( i  : ) / m )  i , /  1 , 2  . . . . .  N .  

! 

hi. i ~ 2 k cos - , = 
k=0 

Here  2~ ~, (v,/~) is an element of matr ix  Ak, v,/~ = 1, 2 . . . . .  m; k = 0, 1 . . . . .  n; the pr ime at the summat ion  sign 

means that  the term at k = 0 is taken with the coefficient 1/2. 

In the case considered 

0" 2 2t~ ~ =Jr  , v ~ l ~ ; = + ( k / R v )  , v =  1 , 2  . . . . .  m .  

As a result, we obtain 

v'u=~.0'u~iy v ~ / ~ ,  i , j  1,2 ,  N ,a, w + Rv-2 tO) hiy ' = . . . .  ; hi] = 2 0  ~ij  h , i, j = 1 ,2  . . . . .  N ,  

where 
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= ~ c o s  ( k 2 x  (i - j ) / n ) ,  i, j = 1, 2 . . . . .  N ,  
k=0 

i.e., h (l) is a symmetric circulant with eigenvalues k 2, k ,~ 0, 1 . . . . .  n; 60 is a unit matr ix of size N • N. Thus ,  for 

a rapid multiplication of h-matrix H (4) by a vector we need a fast algorithm for multiplication of a symmetr ic  

circulant h ~  by a vector. Such an algorithm was constructed in [4 ]. 

3. Counting the Number  of  Operations.  In [4 ] the problem of rapid multiplication of a symmetric  circulant 

by a vector is reduced to a problem of rapid calculation of sums of the form 

Aq = j~O'= f/exp 2~i , q = 0, 1 . . . . .  2n .  (5) 

Let N = 3 r, r = 1, 2, 3 . . . . .  Then,  to calculate sums (3.1) we can use a fast Fourier  t ransform algori thm 

[5 ]. This  algorithm requires 4N log3 N - N + 1 operations. The  proof follows from an ordinary fast Fourier  

t ransform scheme if we take into account that some of the exponents by which multiplication is performed become 

equal to unity. 

If only the Fourier coefficients at q -- 0, 1 . . . . .  n are required (we will call such a t ransformation an 

incomplete Fourier  transform),  then the number  of operations is reduced to 4N log3 N - 3N + 3 operations. 

To  mult iply a symmetr ic  circulant by  a vector, one incomplete Four ier  t ransform and  two complete 

t ransforms are required. 

We will denote  the number  of nodes in a grid in a circle by 9~ -- mN. Then  an accurate computation of the 

number  of operations for multiplying h-matr ix (4) by a vector yields 

M = ~ R ( 1 2 1 o g  3 N + 2 ( m -  1)) + 5 m  

operations. Direct multiplication of a completely filled matrix of size ~R x ~R requires 2~R 2 - ~R operations. 

As an example, we will consider a grid in a circle of 10 x 27, i.e., consisting of 10 circles with 27 points 

in each circle. Then ,  using the algorithm for rapid multiplication of an h-matr ix  by a vector, the number  of 

operations is reduced by a factror of 9.95 compared to direct multiplication of a matrix by a vector. 

Calculations by the f irs t-order  explicit scheme require, in addition to (3.2), 3~R + l more operations in 

each time step. 

4. Stability. In practical problems the value of the diffusion coefficient is very small. We assume that  the 

characteristic time T -- 1 is one year  and the characteristic dimension is L = 200 m (the scale of the map).  Then ,  

the dimensionless diffusion coefficient D with which calculations were performed is 1.5768- 10 -7. The  stability of 

calculation by the explicit scheme is ensured if the condition r < (D s p r ) ( Z H ) ) - l  is satisfied, where r is the time 

step and Z is a diagonal matrix with numbers  zi = I~o'(~i) 12, i = 1, 2 . . . . .  ~ on the diagonal (~i, i = 1, 2 . . . . .  fit are 

the nodes of the grid in a circle). In practical calculations we performed direct computation of the spectral radius 

of matri  ZH, and the conditions of the time stability of calculation were obtained: for r < 3.34 for a grid 10 x 27; 

r < 0.2036 for a grid of 20 • 27, and r < 4 .00.10 -2  for a grid of 30 • 27. Thus,  the stability conditions are not 

burdensome and allow one to carry out fast calculations. 

Conclusion. T h e  d e s c r i b e d  a l g o r i t h m  for  solving d i f fu s ion  e q u a t i o n s  has  an  a r b i t r a r y  o r d e r  of 

approximation in space variables, i.e., its accuracy is the higher, the smoother the solution in space variables. This 

follows from the algorithm for solving the Bessel equations to construct the cells A k, k = 0, 1 . . . .  , n of h-matr ix  H. 

This offers an advantage over difference methods,  which have a fixed order  of approximation over space variables 

irrespective of the smoothness of the solution. In practice, this allows (with smooth initial data) calculations on 

coarse space grids. We note that spr (Z/-/) grows rapidly with an increase in ~R, and this makes it necessary to 

decrease the time step to ensure stability. 

In speed and the amount  of information stored, the method is competitive with difference methods.  
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